84 research outputs found

    Towards Persistent Storage and Retrieval of Domain Models using Graph Database Technology

    Full text link
    We employ graph database technology to persistently store and retrieve robot domain models.Comment: Presented at DSLRob 2015 (arXiv:1601.00877

    A Platform-independent Programming Environment for Robot Control

    Full text link
    The development of robot control programs is a complex task. Many robots are different in their electrical and mechanical structure which is also reflected in the software. Specific robot software environments support the program development, but are mainly text-based and usually applied by experts in the field with profound knowledge of the target robot. This paper presents a graphical programming environment which aims to ease the development of robot control programs. In contrast to existing graphical robot programming environments, our approach focuses on the composition of parallel action sequences. The developed environment allows to schedule independent robot actions on parallel execution lines and provides mechanism to avoid side-effects of parallel actions. The developed environment is platform-independent and based on the model-driven paradigm. The feasibility of our approach is shown by the application of the sequencer to a simulated service robot and a robot for educational purpose

    Neural Semantic Parsing for Syntax-Aware Code Generation

    Get PDF
    The task of mapping natural language expressions to logical forms is referred to as semantic parsing. The syntax of logical forms that are based on programming or query languages, such as Python or SQL, is defined by a formal grammar. In this thesis, we present an efficient neural semantic parser that exploits the underlying grammar of logical forms to enforce well-formed expressions. We use an encoder-decoder model for sequence prediction. Syntactically valid programs are guaranteed by means of a bottom-up shift-reduce parser, that keeps track of the set of viable tokens at each decoding step. We show that the proposed model outperforms the standard encoder-decoder model across datasets and is competitive with comparable grammar-guided semantic parsing approaches

    Maximum Likelihood Uncertainty Estimation: Robustness to Outliers

    Get PDF
    We benchmark the robustness of maximum likelihood based uncertainty estimation methods to outliers in training data for regression tasks. Outliers or noisy labels in training data results in degraded performances as well as incorrect estimation of uncertainty. We propose the use of a heavy-tailed distribution (Laplace distribution) to improve the robustness to outliers. This property is evaluated using standard regression benchmarks and on a high-dimensional regression task of monocular depth estimation, both containing outliers. In particular, heavy-tailed distribution based maximum likelihood provides better uncertainty estimates, better separation in uncertainty for out-of-distribution data, as well as better detection of adversarial attacks in the presence of outliers

    A Survey on Domain-Specific Languages in Robotics

    Get PDF
    Nordmann A, Hochgeschwender N, Wrede S. A Survey on Domain-Specific Languages in Robotics. In: International Conference on Simulation, Modeling, and Programming for Autonomous Robots. 2014.The design, simulation and programming of robotics systems is challenging as expertise from multiple domains needs to be integrated conceptually and technically. Domain-specific modeling promises an efficient and flexible concept for developing robotics applications that copes with this challenge. It allows to raise the level of abstraction through the use of specific concepts that are closer to the respective domain concerns and easier to understand and validate. Furthermore, it focuses on increasing the level of automation, e.g. through code generation, to bridge the gap between the modeling and the implementation levels and to improve the efficiency and quality of the software development process. Within this contribution, we survey the literature available on domain-specific (modeling) languages in robotics required to realize a state-of-the-art real-world example from the RoboCup@Work competition. We classify 41 publications in the field as reference for potential DSL users. Furthermore, we analyze these contributions from a DSL-engineering viewpoint and discuss quantitative and qualitative aspects such as the methods and tools used for DSL implementation as well as their documentation status and platform integration. Finally, we conclude with some recommendations for discussion in the robotics programming and simulation community based on the insights gained with this survey

    RoCKIn@Work: Industrial Robot Challenge

    Get PDF
    RoCKIn@Work was focused on benchmarks in the domain of industrial robots. Both task and functionality benchmarks were derived from real world applications. All of them were part of a bigger user story painting the picture of a scaled down real world factory scenario. Elements used to build the testbed were chosen from common materials in modern manufacturing environments. Networked devices, machines controllable through a central software component, were also part of the testbed and introduced a dynamic component to the task benchmarks. Strict guidelines on data logging were imposed on participating teams to ensure gathered data could be automatically evaluated. This also had the positive effect that teams were made aware of the importance of data logging, not only during a competition but also during research as useful utility in their own laboratory. Tasks and functionality benchmarks are explained in detail, starting with their use case in industry, further detailing their execution and providing information on scoring and ranking mechanisms for the specific benchmark

    Maximum Likelihood Uncertainty Estimation: Robustness to Outliers

    Get PDF
    We benchmark the robustness of maximum likelihood based uncertainty estimation methods to outliers in training data for regression tasks. Outliers or noisy labels in training data results in degraded performances as well as incorrect estimation of uncertainty. We propose the use of a heavy-tailed distribution (Laplace distribution) to improve the robustness to outliers. This property is evaluated using standard regression benchmarks and on a high-dimensional regression task of monocular depth estimation, both containing outliers. In particular, heavy-tailed distribution based maximum likelihood provides better uncertainty estimates, better separation in uncertainty for out-of-distribution data, as well as better detection of adversarial attacks in the presence of outliers

    Model-Driven Interaction Design for Social Robots

    Get PDF
    Robotic software development frameworks lack a possibility to present,validate and generate qualitative complex human robot interactions and robot de-velopers are mostly left with unclear informal project specifications. The devel-opment of a human-robot interaction is a complex task and involves different ex-perts, for example, the need for human-robot interaction (HRI) specialists, whoknow about the psychological impact of the robot’s movements during the in-teraction in order to design the best possible user experience. In this paper, wepresent a new project that aims to provide exactly this. Focusing on the interac-tion flow and movements of a robot for human-robot interactions we aim to pro-vide a set of modelling languages for human-robot interaction which serves as acommon, more formal, discussion point between the different stakeholders. Thisis a new project and the main topics of this publication are the scenario descrip-tion, the analysis of the different stakeholders, our experience as robot applicationdevelopers for our partner, as well as the future work we plan to achieve

    Evaluating Uncertainty Estimation Methods on 3D Semantic Segmentation of Point Clouds

    Full text link
    Deep learning models are extensively used in various safety critical applications. Hence these models along with being accurate need to be highly reliable. One way of achieving this is by quantifying uncertainty. Bayesian methods for UQ have been extensively studied for Deep Learning models applied on images but have been less explored for 3D modalities such as point clouds often used for Robots and Autonomous Systems. In this work, we evaluate three uncertainty quantification methods namely Deep Ensembles, MC-Dropout and MC-DropConnect on the DarkNet21Seg 3D semantic segmentation model and comprehensively analyze the impact of various parameters such as number of models in ensembles or forward passes, and drop probability values, on task performance and uncertainty estimate quality. We find that Deep Ensembles outperforms other methods in both performance and uncertainty metrics. Deep ensembles outperform other methods by a margin of 2.4% in terms of mIOU, 1.3% in terms of accuracy, while providing reliable uncertainty for decision making.Comment: 12 pages, 19 figures, ICML 2020 Workshop on Uncertainty and Robustness in Deep Learnin
    • …
    corecore